Discovery of New Lithium-Ion Conductor Paves the Way for Sustainable Battery Innovation

Discovery of New Lithium-Ion Conductor Paves the Way for Sustainable Battery Innovation

Introduction to a Major Materials Science Challenge

One of the grand challenges for materials science is the design and discovery of new materials that address global priorities such as Net Zero.

Discovery of a Rapid Lithium Ion Conductor

In a paper published in the journal Science, researchers at the University of Liverpool have discovered a solid material that rapidly conducts lithium ions. Such lithium electrolytes are essential components in the rechargeable batteries that power electric vehicles and many electronic devices.

The Composition and Importance of the New Material

Consisting of non-toxic earth-abundant elements, the new material has high enough Li ion conductivity to replace the liquid electrolytes in current Li ion battery technology, improving safety and energy capacity.

Interdisciplinary Approach in Material Design

Using a transformative scientific approach to design the material, the interdisciplinary research team from the University synthesised the material in the laboratory, determined its structure (the arrangement of the atoms in space) and demonstrated it in a battery cell.

Novelty and Operation of the Material

The new material is one of a very small number of solid materials that achieve Li ion conductivity high enough to replace liquid electrolytes, and operates in a new way because of its structure.

Collaborative Workflow Utilizing AI in Materials Discovery

Its discovery was achieved through a collaborative computational and experimental workflow that used AI and physics-based calculations to support decisions made by chemistry experts at the University.

Optimisation and Further Discovery Potential

The new material provides a platform for the optimisation of chemistry to further enhance the properties of the material itself, and to identify other materials based on the new understanding provided by the study.

Professor Rosseinsky’s Insights on the Material’s Significance

Professor Matt Rosseinsky, from the University of Liverpool’s Department of Chemistry, said: “This research demonstrates the design and discovery of a material that is both new and functional. The structure of this material changes previous understanding of what a high-performance solid-state electrolyte looks like.

Expanding the Chemical Space for More Discoveries

“Specifically, solids with many different environments for the mobile ions can perform very well, not just the small number of solids where there is a very narrow range of ionic environments. This dramatically opens up the chemical space available for further discoveries.

AI Tools in Material Design

Recent reports and media coverage herald the use of AI tools to find potentially new materials. In these cases, the AI tools are working independently and thus are likely to recreate what they were trained on in various ways, generating materials that may be very similar to known ones.

The Role of Expert-Driven AI in Materials Discovery

“This discovery research paper shows that AI and computers marshalled by experts can tackle the complex problem of real-world materials discovery, where we seek meaningful differences in composition and structure whose impact on properties is assessed based on understanding.”

The Disruptive Approach to Materials Design

“Our disruptive design approach offers a new route to discovery of these and other high-performance materials that rely on the fast motion of ions in solids.”

Collaboration Across University Departments

The study undertaken was a combined effort between researchers in University of Liverpool’s Department of Chemistry, Materials Innovation Factory, Leverhulme Research Centre for Functional Materials Design, Stephenson Institute for Renewable Energy, Albert Crewe Centre, and School of Engineering.

Funding Acknowledgement

The work was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Leverhulme Trust, and the Faraday Institution.